Top 10 da Semana

Celebre a Alegria do Dia das Crianças com Desenhos para Colorir! 🎨👧👦

Noite Estrelada de Van Gogh: Uma Obra de Arte Encantadora para Imprimir e Colorir

Cubo Planificado para Imprimir

Flores para Imprimir e Colorir: Encante-se com a Beleza da Natureza

Nossa Senhora Aparecida: Uma Jornada de Fé em Cores

Páginas Sagradas: Jonas e a Baleia para Imprimir e Colorir - Deixe Sua Criatividade Fluir!

Para Colorir - Romero Britto

Desenhos da Turma da Mônica para imprimir e colorir

"O Pescador" - Tarsila do Amaral

Pular para o conteúdo principal

Pesquise aqui

Em uma biblioteca, os livros de matemática são organizados em pilhas de 5 e os livros de história são organizados em pilhas de 8.

Em uma biblioteca, os livros de matemática são organizados em pilhas de 5 e os livros de história são organizados em pilhas de 8. Se a biblioteca tem uma pilha de livros de matemática e uma pilha de livros de história, quantos livros seriam necessários para formar uma nova pilha, de forma que os dois tipos de livro estejam agrupados?

Em uma biblioteca, os livros de matemática são organizados em pilhas de 5 e os livros de história são organizados em pilhas de 8.
calcular mmc

Para resolver esse problema, precisamos encontrar o MMC entre os números 5 e 8, que representam o tamanho das pilhas de livros de matemática e história, respectivamente. O MMC será o menor número de livros necessário para criar uma nova pilha que contenha grupos completos de ambos os tipos de livro. Vamos seguir os passos abaixo para encontrar a solução:

Passo 1: Liste os múltiplos de cada número:

  • Múltiplos de 5: 5, 10, 15, 20, 25, 30, ...
  • Múltiplos de 8: 8, 16, 24, 32, 40, 48, ...

Passo 2: Identifique o menor múltiplo comum entre os números:

  • O menor múltiplo comum entre 5 e 8 é 40, pois é o primeiro número que aparece nas listas de múltiplos de ambos.

Portanto, seriam necessários 40 livros para formar uma nova pilha em que os livros de matemática e história estejam agrupados.

Explicação: Ao buscar agrupar os livros de matemática e história em uma nova pilha, precisamos encontrar o menor número de livros que permita formar grupos completos de ambos os tipos de livro.

Ao observar as listas de múltiplos, podemos ver que o primeiro número que aparece nas listas de múltiplos de 5 e 8 é o número 40. Isso significa que uma nova pilha formada por 40 livros permitiria criar grupos completos de 5 livros de matemática e 8 livros de história.

Portanto, seriam necessários 40 livros para formar uma nova pilha em que os livros de matemática e história estejam agrupados. O MMC é uma ferramenta útil para encontrar a quantidade mínima de itens necessários para criar grupos completos e equilibrados.

Voltar para as questões

Comentários

Postagens Recentes

3-latest-65px